Package: TPCselect 0.8.3

TPCselect: Variable Selection via Threshold Partial Correlation

A threshold partial correlation approach to selecting important variables in linear models of L. and others (2017) at <doi:10.5705/ss.202015.0473>, and in partial linear models of L. and others (2018) at <doi:10.1016/j.jmva.2018.06.005>. This package also extends the PC-simple algorithm of B. and others (2010) at <doi:10.1093/biomet/asq008> to partial linear models.

Authors:Cynthia Shao and Runze Li

TPCselect_0.8.3.tar.gz
TPCselect_0.8.3.zip(r-4.5)TPCselect_0.8.3.zip(r-4.4)TPCselect_0.8.3.zip(r-4.3)
TPCselect_0.8.3.tgz(r-4.4-any)TPCselect_0.8.3.tgz(r-4.3-any)
TPCselect_0.8.3.tar.gz(r-4.5-noble)TPCselect_0.8.3.tar.gz(r-4.4-noble)
TPCselect_0.8.3.tgz(r-4.4-emscripten)TPCselect_0.8.3.tgz(r-4.3-emscripten)
TPCselect.pdf |TPCselect.html
TPCselect/json (API)

# Install 'TPCselect' in R:
install.packages('TPCselect', repos = c('https://cynyus.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 128 downloads 6 exports 8 dependencies

Last updated 1 years agofrom:c916540c85. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winNOTENov 01 2024
R-4.4-macNOTENov 01 2024
R-4.3-winNOTENov 01 2024
R-4.3-macNOTENov 01 2024

Exports:generate_toy_pldataTPCTPC_BICTPC_plTPC_pl_BICTPCselect

Dependencies:corpcorGPArotationKernSmoothlatticeMASSmnormtnlmepsych